Received 9 December 2006

Accepted 19 December 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

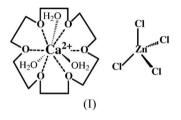
Xi Liu^a* and Guo-Cong Guo^b

^aCollege of Chemistry, Chongqing Normal University, Chongqing 400047, People's Republic of China, and ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

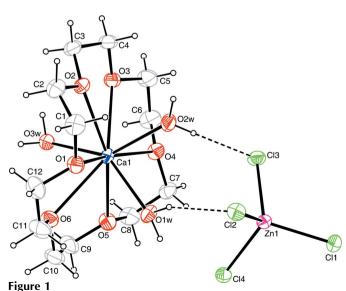
Correspondence e-mail: xliu@cqnu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.040 wR factor = 0.108 Data-to-parameter ratio = 22.4


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Triaqua(18-crown-6)calcium(II) tetrachlorozincate(II)


Diffusion of diethyl ether into a reaction mixture of zinc salts, crown ether and calcium chloride in tetrahydrofuran (THF) led to the title compound, $[Ca(C_{12}H_{24}O_6)(H_2O)_3][ZnCl_4]$. The cation is linked to the anion *via* $O-H\cdots Cl$ hydrogen bonding.

Comment

The ability of 18-crown-6 ether (18-C-6) to form complexes with different metal ions has been widely investigated. We report here the synthesis and crystal structure of the title compound, (I).

The crystal structure of (I) consists of $[Ca(18-C-6)(H_2O)_3]^{2+}$ cations and $[ZnCl_4]^{2-}$ anions. The structure of the cation is similar to that found in $[Ca(18-C-6)(H_2O)_3][Cu_5I_7]$ (Nurtaeva & Holt, 2002). The crystal structure of the $[ZnCl_4]^{2-}$ anion is in good agreement with that in reported complexes (Jackson *et al.*, 1981; Smolenaers *et al.*, 1981; Otter & Hartshorn, 2004). The cation is linked to the anion *via* O-H···Cl hydrogen bonding (Table 1).

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds.

© 2007 International Union of Crystallography All rights reserved

Experimental

ZnCl₂·2H₂O (35 mg, 0.2 mmol), 18-C-6 (53 mg, 0.2 mmol) and CaCl₂ (22 mg, 0.2 mmol) were added to THF (10 ml) and the reaction mixture was stirred at 333 K for 6 h. The mixture was filtered and the filtrate was reduced to 5 ml in a small tube, which was loaded into a large vial containing 5 ml diethyl ether. The large vial was sealed and left undisturbed at room temperature; colorless crystals of (I) were obtained after 7 d (yield: 76%). Calculated for $C_{12}H_{30}CaCl_4O_9Zn$: C 25.48, H 5.35%; found: C 25.60, H 5.42%.

Crystal data

 $\begin{bmatrix} Ca(C_{12}H_{24}O_6)(H_2O)_3 \end{bmatrix} \begin{bmatrix} ZnCl_4 \end{bmatrix}$ $M_r = 565.61$ Monoclinic, $P2_1/c$ a = 12.573 (3) Å b = 9.489 (2) Å c = 20.546 (5) Å $\beta = 101.262$ (3)° V = 2404.0 (11) Å³

Data collection

Rigaku Mercury CCD diffractometer ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2002) $T_{\min} = 0.515, T_{\max} = 0.655$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.108$ S = 1.005468 reflections 244 parameters Z = 4 D_x = 1.563 Mg m⁻³ Mo K α radiation μ = 1.72 mm⁻¹ T = 293 (2) K Prism, colorless 0.30 × 0.25 × 0.25 mm

17093 measured reflections 5468 independent reflections 4955 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$ $\theta_{\text{max}} = 27.5^{\circ}$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (A,).	
----------------------------	----	--

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1E\cdots$ Cl4	0.93	2.34	3.227 (2)	158
$O1W-H1F\cdots Cl2$	0.86	2.48	3.306 (2)	161
$O2W - H2E \cdot \cdot \cdot Cl3$	0.92	2.35	3.236 (2)	163
$O2W-H2F\cdots Cl2^{i}$	0.99	2.33	3.285 (2)	163
O3W−H3E···Cl4 ⁱⁱ	0.85	2.67	3.410 (2)	146
$O3W-H3F\cdots$ Cl1 ⁱⁱ	0.96	2.22	3.157 (2)	165

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed in calculated positions, with C-H = 0.97Å, and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *CrystalClear* (Rigaku, 2002); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Siemens, 1994); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support from the NSF of China (No. 20571075) and the NSF for Distinguished Young Scientists in China (No. 20425104).

References

Jackson, W. G., Sargeson, A. M., Tucker, P. A. & Watson, A. D. (1981). J. Am. Chem. Soc. 103, 533–540.

Nurtaeva, A. & Holt, E. M. (2002). J. Chem. Crystallogr. 32, 337-346.

Otter, C. A. & Hartshorn, R. M. (2004). J. Chem. Soc. Dalton Trans. pp. 150– 156.

Rigaku (2002). CrystalClear. Version 1.35. Rigaku Corporation, Tokyo, Japan. Siemens (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Smolenaers, P. J., Beattie, J. K. & Hutchinson, N. D. (1981). Inorg. Chem. 20, 2202–2206.